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Abstract

Graph based semi-supervised learning is the problem of learning a labeling function
for the graph nodes given a few example nodes, often called seeds, usually under
the assumption that the graph’s edges indicate similarity of labels. This is closely
related to the local graph clustering or community detection problem of finding
a cluster or community of nodes around a given seed. For this problem, we
propose a novel generalization of random walk, diffusion, or smooth function
methods in the literature to a convex p-norm cut function. The need for our p-
norm methods is that, in our study of existing methods, we find those principled
methods based on eigenvector, spectral, random walk, or linear system often have
difficulty capturing the correct boundary of a target label or target cluster. In
contrast, 1-norm or maxflow-mincut based methods capture the boundary, but
cannot grow from small seed set; hybrid procedures that use both have many
hard to set parameters. In this paper, we propose a generalization of the objective
function behind these methods involving p-norms. To solve the p-norm cut problem
we give a strongly local algorithm – one whose runtime depends on the size of the
output rather than the size of the graph. Our method can be thought as a nonlinear
generalization of the Anderson-Chung-Lang push procedure to approximate a
personalized PageRank vector efficiently. Our procedure is general and can solve
other types of nonlinear objective functions, such as p-norm variants of Huber
losses. We provide a theoretical analysis of finding planted target clusters with our
method and show that the p-norm cut functions improve on the standard Cheeger
inequalities for random walk and spectral methods. Finally, we demonstrate the
speed and accuracy of our new method in synthetic and real world datasets.

1 Introduction

Many datasets important to machine learning either start as a graph or have a simple translation into
graph data. For instance, relational network data naturally starts as a graph. Arbitrary data vectors
become graphs via nearest-neighbor constructions, among other choices. Consequently, understanding
graph-based learning algorithms – those that learn from graphs – is a recurring problem. This field
has a rich history with methods based on linear systems [61, 62], eigenvectors [27, 24], graph cuts [8],
and network flows [35, 4, 54], although recent work in graph-based learning has often focused on
embeddings [50, 22] and graph neural networks [58, 29, 39]. Our research seeks to understand the
possibilities enabled by a certain p-norm generalization of the standard techniques.

Perhaps the two prototypical graph-based learning problems are semi-supervised learning and local
clustering. Other graph-based learning problems include role discovery and alignments. Semi-
supervised learning involves learning a labeling function for the nodes of a graph based on a few
examples, often called seeds. The most interesting scenarios are when most of the graph has unknown
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(a) Seed node and the target. (b) 2-norm problem. (c) 1.1-norm problem.

Figure 1: A simple illustration of the benefits of our p-norm methods. In this problem, we generate
a graph from an image with weighted neighbors as described in [51]. We intentionally make this
graph consider large regions, so each pixel is connected to all neighbors within 40 pixels away. (Full
details in the supplement.) The target in this problem is the cluster defined by the interior of the
window and we select a single pixel inside the window as the seed. The three colors (yellow, orange,
red) show how the non-zero elements of the solution fill-in as we decrease a sparsity penalty in our
formulation (yellow is sparsest, red is densest). The 2-norm result exhibits a typical phenomenon
of over-expansion, whereas the 1.1-norm accurately captures the true boundary. We tried running
various 1-norm methods, but they were unable to grow a single seed node, as has been observed in
many past experiments and also theoretically justified in [15, Lemma 7.2].

labels and there are only a few examples per label. This could be a constant number of examples
per label, such as 10 or 50, or a small fraction of the total label size, such as 1%. Local clustering is
the problem of finding a cluster or community of nodes around a given set of seeds. This is closely
related to semi-supervised learning because that cluster is a natural suggestion for nodes that ought to
share the same label, if there is a homophily property for edges in the network. If this homophily is
not present, then there are transformations of the graph that can make these methods work better [49].

For both problems, a standard set of techniques is based on random walk diffusions and mincut
constructions [61, 62, 27, 21, 48]. These reduce the problem to a linear system, eigenvector, random
walk, or mincut-maxflow problem, which can often be further approximated. As a simple example,
consider solving a seeded PageRank problem that is seeded on the nodes known to be labeled with
a single label. The resulting PageRank vector indicates other nodes likely to share that same label.
This propensity of PageRank to propogate labels has been used in a many applications and it has
many interpretations [32, 20, 45, 48, 41, 18], including guilt-by-association [33]. A related class of
mincut-maxflow constructions uses similar reasoning [8, 54, 55].

The link between these PageRank methods and the mincut-maxflow computations is that they
correspond to 1-norm and 2-norm variations on a general objective function (see [19] and Equation 1).
In this paper, we replace the norm with a general p-norm. (For various reasons, we refer to it as a
q-norm in the subsequent technical sections. We use p-norm here as this usage is more common.) The
literature on 1 and 2-norms is well established and largely suggests that 1-norm (mincut) objectives
are best used for refining large results from other methods – especially because they tend to sharpen
boundaries – whereas 2-norm methods are best used for expanding small seed sets [54]. There is a
technical reason for why mincut-maxflow formulations cannot expand small seed sets, unless they
have uncommon properties, discussed in [15, Lemma 7.2]. The downside to 2-norm methods is
that they tend to “expand” or “bleed out” over natural boundaries in the data. This is illustrated
in Figure 1(b). The hypothesis motivating this work is that techniques that use a p-norm where
1 < p < 2 should provide a useful alternative – if they can be solved as efficiently as the other cases.
This is indeed what we find and a small example of what our methods are capable of is shown in
Figure 1(c), where we use a 1.1-norm to avoid the over-expansion from the 2-norm method.

We are hardly the first to notice these effects or propose p-norms as a solution. For instance, the
p-Laplacian [3] and related ideas [2] has been widely studied as a way to improve results in spectral
clustering [10] and semi-supervised learning [9]. This has recently been used to show the power of
simple nonlinearities in diffusions for semi-supervised learning as well [25]. The major rationale for
our paper is that our algorithmic techniques are closely related to those used for 2-norm optimization.
It remains the case that spectral (2-norm) approaches are far more widely used in practice, partly
because they are simpler to implement and use, whereas the other approaches involve more delicate
computations. Our new formulations are amenable to similar computation techniques as used for
2-norm problems, which we hope will enable them to be widely used.

2



The remainder of this paper consists of a demonstration of the potential of this idea. We first formally
state the problem and review technical preliminaries in Section 2. As an optimization problem
the p-norm problem is strongly convex with a unique solution. Next, we provide a strongly local
algorithm to approximate the solution (Section 3). A strongly local algorithm is one where the runtime
depends on the size of the output rather than the size of the input graph. This enables the methods
to run efficiently even on large graphs, because, simply put, we are able to bound the maximum
output size and runtime independently of the graph size. A hallmark of the existing literature on
these methods is a recovery guarantee called a Cheeger inequality. Roughly, this inequality shows
that, if the methods are seeded nearby a good cluster, then the methods will return something that is
not too far away from that good cluster. This is often quantified in terms of the conductance of the
good cluster and the conductance of the returned cluster. There are a variety of tradeoffs possible
here [5, 63, 57]. We prove such a relationship for our methods where the quality of the guarantee
depends on the exponent 1/p, which reproduces the square root Cheeger guarantees [13] for p = 2
but gives better results when p < 2. Finally, we empirically demonstrate a number of aspects of our
methods in comparison with a number of other techniques in Section 5. The goal is to highlight
places where our p-norm objectives differ.

At the end, we have a number of concluding discussions (Section 6), which highlight dimensions
where our methods could be improved, as well as related literature. For instance, there are many
ways to use personalized PageRank methods with graph convolutional networks and embedding
techniques [29] – we conjecture that our p-norm methods will simply improve on these relationships.
Also, and importantly, as we were completing this paper, we became aware of [17] which discusses
p-norms for flow-based diffusions. Our two papers have many similar findings on the benefit of
p-norms, although there are some meaningful differences in the approaches, which we discuss in
Section 6. In particular, our algorithm is distinct and follows a simple generalization of the widely
used and deployed push method for PageRank. Our hope is that both papers can highlight the benefits
of this idea to improve the practice of graph-based learning.

2 Generalized local graph cuts

We consider graphs that are undirected, connected, and weighted with positive edge weights lower-
bounded by 1. Let G = (V,E,w) be such a graph, where n = |V | and m = |E|. The adjacency
matrix A has non-zero entries w(i, j) for each edge (i, j), and all other entries are zero. This is
symmetric because the graph is undirected. The degree vector d is defined as the row sum of A and
D is a diagonal matrix defined as diag(d). The incidence matrix B ∈ {0,−1, 1}m×n measures the
differences of adjacent nodes. The kth row of B represents the kth edge and each row has exactly two
nonzero elements, i.e. 1 for start node of kth edge and −1 for end node of kth edge. For undirected
graphs, either node can be the start node or end node and the order does not matter. We use vol(S)

for the sum of weighted degrees of the nodes in S and φ(S) = cut(S)
min(vol(S),vol(S̄))

for conductance.

For simplicity, we begin with PageRank, which has been used for all of these tasks in various
guises [61, 21, 5]. A PageRank vector [20] is the solution of the linear system (I − αAD−1)x =
(1− α)v where α is a probability between 0 and 1 and v is a stochastic vector that gives the seed
distribution. This can be easily reworked into the equivalent linear system (γD + L)y = γv where
x = Dy and L is the graph Laplacian L = D −A. The starting point for our methods is a result
shown in [19], where we can further translate this into a 2-norm “cut” computation on a graph
called the localized cut graph that is closely related to common constructions in maxflow-mincut
computations for cluster improvement [4, 15].

The localized cut graph is created from the original graph, a set S, and a value γ. The construction
adds an extra source node s and an extra sink node t, and edges from s to the original graph that
localize a solution, or bias, a solution within the graph near the set S. Formally, given a graph
G = (V,E) with adjacency matrix A, a seed set S ⊂ V and a non-negative constant γ, the adjacency
matrix of the localized cut graph is:

AS =

[
0 γdT

S 0
γdS A γdS̄

0 γdT
S̄

0

]
and a small illustration is s t
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Here S̄ is the complement set of S, dS = DeS , dS̄ = DeS̄ , and eS is an indicator vector for S.
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(a) PageRank (α = 0.85) (b) q=2, γ= κ =10−3 (c) q=5, γ=10−5, κ=10−4 (d) q=1.25, γ= κ =10−3

(e) heat kernel [12, 30]
t = 10, ε = 0.003

(f) CRD [57]
U = 60, h = 60, w = 5

(g) p = 1.5-diffusion [25],
h=0.002, k = 35000

(h) 1.5-Laplacian [25], h=
0.0001, n = 7500

Figure 2: A comparison of seeded cut-like and clustering objectives on a regular grid-graph with
4 axis-aligned neighbors. The graph is 50-by-50, the seed is in the center. The diffusions localize
before the boundary so we only show the relevant region and the quantile contours of the values. We
selected the parameters to give similar-sized outputs. (Top row) At left (a), we have seeded PageRank;
(b)-(d) show our q-norm objectives; (b) is a 2-norm which closely resembles PageRank; (c) is a
5-norm that has diamond-contours; and (d) is a 1.25-norm that has square contours. (Bottom row)
Existing work with the (e) heat kernel diffusion [12, 30], (f) CRD [57], (g) nonlinear diffusions [25]
(with a simple (g) p-norm nonlinearity in the diffusion or a (h) p-Laplacian) show that similar results
are possible with existing methods, although they lack the simplicity of our optimization setup and
often lack the strongly local algorithms.

Let B,w be the incidence matrix and weight vector for the localized cut-graph. Then PageRank is
equivalent to the following 2-norm-cut problem (see full details in [19])

minimize
x

wT (Bx)2 =
∑
i,j wi,j(xi − xj)2 = xTBT diag(w)Bx

subject to xs = 1, xt = 0
(1)

We call this a cut problem because if we replace the squared term with an absolute value (i.e.,∑
wi,j |xi − xj |), then we have the standard s, t-mincut problem. Our paper proceeds from changing

this power of 2 into a more general loss-function ` and also adding a sparsity penalty, which is often
needed to produce strongly local solutions [19]. We define this formally now.
Definition 1 (Generalized local graph cut). Fix a set S of seeds and a value of γ. Let B, w be the
incidence matrix and weight vector of the localized cut graph. Then the generalized local graph cut
problem is:

minimize
x

wT `(Bx) + κγdTx =
∑
ij wi,j`(xi − xj) + κγ

∑
i xidi

subject to xs = 1, xt = 0,x ≥ 0.
(2)

Here `(x) is an element-wise function and κ ≥ 0 is a sparsity-promoting term.

We compare using power functions `(x) = 1
q |x|

q to a variety of other techniques for semi-supervised
learning and local clustering in Figure 2. If ` is convex, then the problem is convex and can be solved
via general-purpose solvers such as CVX. An additional convex solver is SnapVX [23], which studied
a general combination of convex functions on nodes and edges of a graph, although neither of these
approaches scale to the large graphs we study in subsequent portions of this paper (65 million edges).
To produce a specialized, strongly local solver, we found it necessary to restrict the class of functions
` to have similar properties to the power function `(x) = 1

q |x|
q and its derivative `′(x).
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Definition 2. In the [−1, 1] domain, the loss function `(x) should satisfy (1) `(x) is convex; (2)
`′(x) is an increasing and anti-symmetric function; (3) For ∆x > 0, `′(x) should satisfy either of the
following condition with constants k > 0 and c > 0 (3a) `′(x+∆x) ≤ `′(x)+k`′(∆x) and `′′(x) > c
or (3b) `′(x) is strictly increasing, c-Lipschitz continuous and `′(x+ ∆x) ≥ `′(x) + k`′(∆x) when
x ≥ 0.
Remark. If `′(x) is Lipschitz continuous with Lipschitz constant to be L and `′′(x) > c, then
constraint 3(a) can be satisfied with k = L/c. However, `′(x) can still satisfy 3(a) even if it is not
Lipschitz continuous. A simple example is `(x) = |x|1.5, −1 ≤ x ≤ 1. In this case, k = 1 but it is
not Lipschitz continuous at x = 0. On the other hand, when `′(x) is Lipschitz continuous, it can
satisfy constraint 3(b) even if `′′(x) = 0. An example is `(x) = |x|3.5, −1 < x < 1. In this case
`′′(x) = 0 when x = 0 but `′(x+ ∆x) ≥ `′(x) + `′(∆x) when x ≥ 0.
Lemma 2.1. The power function `(x) = 1

q |x|
q, −1 < x < 1 satisfies definition 2 for any q > 1.

More specifically, when 1 < q < 2, `(x) satisfies 3(a) with c = q − 1 and k = 22−q, when q ≥ 2,
`(x) satisfies 3(b) with c = q − 1 and k = 1.

All proofs and additional lemmas are in the supplementary material for Sections 2, 3, 4.

Note that the `(x) = |x| does not satisfy either choice for property (3). Consequently, our theory
will not apply to mincut problems. In order to justify the generalized term, we note that q-norm
generalizations of the Huber and Berhu loss functions [47] do satisfy these definitions.
Definition 3. Given 1 < q < 2 and 0 < δ < 1, the “q-Huber” and “Berq” function are

q-Huber `(x) = =

{ 1
2δ
q−2x2 if |x| ≤ δ

1
q |x|

q + ( q−2
2q )δq otherwise

Berq `(x) = =

{
1
q δ

2−q|x|q if |x| ≤ δ
1
2x

2 + ( 2−q
2q )δ2 otherwise.

Lemma 2.2. When −1 ≤ x ≤ 1, both “q-Huber” and “Berq” satisfy Definition 2. The value of k
for both is 22−q , the c for q-Huber is q − 1 while the c for “Berq” is 1.

We now state uniqueness.
Theorem 2.1. Fix a set S, γ > 0, κ > 0. For any loss function satisfying Definition 2, then the
solution x of (2) is unique. Moreover, define a residual function r(x) = − 1

γB
T diag(`′(Bx))w.

A necessary and sufficient condition to satisfy the KKT conditions is to find x∗ where x∗ ≥ 0,
r(x∗) = [rs,g

T , rt]
T with g ≤ κd (where d reflects the original graph), k∗ = [0, κd− g, 0]T and

xT (κd− g) = 0.

3 Strongly Local Algorithms

In this section, we will provide a strongly local algorithm to approximately optimize equation (2)
with `(x) satisfying definition 2. The simplest way to understand this algorithms is as a nonlinear
generalization of the Andersen-Chung-Lang push procedure for PageRank [5], which we call ACL.
(The ACL procedure has strong relationships with Gauss-Seidel, coordinate solvers, and various
other standard algorithms.) The overall algorithm is simple: find a vertex i where the KKT conditions
from Theorem 2.1 are violated and increase xi on that node until we approximately satisfy the KKT
conditions. Update the residual, look for another violation, and repeat. The ACL algorithm targets
q = 2 case, which has a closed form update. We simply need to replace this with a binary search.

For ρ < 1, we only approximately satisfy the KKT conditions, as discussed further in the supplement.
We have the following strongly local runtime guarantee when 3(a) or 3(b) in definition 2 is satisfied.
(This ignores binary search, but that only scales the runtime by log(1/ε) because the values are in
[0, 1].)
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Algorithm nonlin-cut(γ, κ, ρ, ε) for set S and graphG where 0<ρ<1 and 0<ε determine accuracy

1: Let x(i) = 0 except for xs = 1 and set r = − 1
γB

T diag[`′(Bx)]w

2: While there is any vertex i where ri > κdi, or stop if none exists (find a KKT violation)
3: Apply nonlin-push at vertex i, updating x and r
4: Return x

Algorithm nonlin-push(i, γ, κ,x, r, ρ, ε)

1: Use binary search to find ∆xi such that the ith coordinate of the residual after adding ∆xi to xi,
r′i = ρκdi, the binary search stops when the range of ∆x is smaller than ε (satisfy KKT at i).

2: Change the following entries in x and r to update the solution and residual
3: (a) xi ← xi + ∆xi
4: (b) For each neighbor j in the original graphG, rj ← rj+

1
γwi,j`

′(xj−xi)−1
γwi,j`

′(xj−xi−∆xi)

Theorem 3.1. Let γ > 0, κ > 0 be fixed and let k and c be the parameters from 3(a) of Definition 2
for `(x). For 0 < ρ < 1, suppose nonlin-cut stops after K iterations, and di is the degree of node
updated at the i-th iteration, thenK must satisfy:

∑K
i=1 di ≤ vol(S)/c`′−1 (γ(1− ρ)κ/k(1 + γ)) =

O(vol(S)).

The notation `
′−1 refers to the inverse functions of `′(x), This function must be invertible under the

the definition of 3(a). The runtime bound when 3(b) holds is slightly different, see below. Note that
this sum of degrees bounds the total work because a push step at node i is O(di) work (ignoring the
binary search).

The key to prove this runtime bound is that after each nonlin-push procedure, the sum of residuals
will decrease by a value that is independent of the size of the entire graph. And the initial sum of
residuals is vol(S). Also note that if κ = 0, γ = 0, or ρ = 1, then this bound goes to∞ and we
lose our guarantee. However, if these are not the case, then the bound shows that the algorithm
will terminate in time that is independent of the size of the graph. This is the type of guarantee
provided by strongly local graph algorithms and has been extremely useful to scalable network
analysis methods [37, 26, 60, 54, 30]. We also show that a similar runtime guarantee holds when `(x)
satisfies 3(b) of Definition 2.
Theorem 3.2. Let γ > 0, κ > 0 be fixed and let k and c be the parameters from 3(b) of Definition 2
for `(x). For 0 < ρ < 1, suppose nonlin-cut stops after T iterations, and di is the degree of node
updated at the i-th iteration, then T must satisfy:

∑T
i=1 di ≤ vol(S)/k`′ (γ(1− ρ)κ/c(1 + γ)) =

O(vol(S)).

4 Main Theoretical Results – Cut Quality Analysis

A common use for the results of these localized cut solutions is as localized Fiedler vectors of a graph
to induce a cluster [5, 37, 42, 63, 46]. This was the original motivation of the ACL procedure [5],
for which the goal was a small conductance cluster. One of the most common (and theoretically
justified!) ways to convert a real-valued “clustering hint” vector x into clusters is to use a sweep
cut process. This involves sorting x in decreasing order and evaluating the conductance of each
prefix set Sj = {x1, x2, ..., xj} for each j ∈ [n]. The set with the smallest conductance will be
returned. This computation is a key piece of Cheeger inequalities [13, 43]. In the following, we seek
a slightly different type of guarantee. We posit the existence of a target cluster T and show that if T
has useful clustering properties (small conductance, no good internal clusters), then a sweep cut over
a q-norm or q-Huber localized cut vector seeded inside of T will accurately recover T . The key piece
is understanding how the computation plays out with respect to T inside the graph and T as a graph
by itself. We use volT (S), φT (S) to be the volume or conductance of set S in the subgraph induced
by T and ∂T ⊂ T to be the boundary set of T , i.e. nodes in ∂T has at least one edge connecting to
T̄ . Quantities with tildes, e.g., d̃, reflect quantities in the subgraph induced by T . We assume κ = 0,
ρ = 1 and:

Assumption 1. The seed set S satisfies S ⊆ T , S ∩ ∂T = ∅ and
∑
i∈∂T (di − d̃i)x

q−1
i ≤

2φ(T )vol(S).
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We call this the leaking assumption, which roughly states that the solution with the set S stays mostly
within the set T . As some quick justification for this assumption, we note that when when q = 2, [63]
shows by a Markov bound that there exists Tg where vol(Tg) ≥ 1

2 vol(T ) such that any node i ∈ Tg
satisfies

∑
i∈∂T (di − d̃i)xi ≤ 2φ(T )di. So in that case, any seed sets S ⊆ Tg meets our assumption.

For 1 < q < 2, it is straightforward to see any set S with vol(S) ≥ 1
2 vol(T ) satisfies this assumption

since the left hand side is always smaller than cut(T ). However, such a strong assumption is not
necessary for our approach. The above guarantee allows for a small vol(S) and we simply require
Assumption 1 holds. We currently lack a detailed analysis of how many such seed sets there will be.

Assumption 2. A relatively small γ should be chosen such that the solution of localized q-norm cut
problem in the subgraph induced by target cluster T can satisfy min(x̃T ) ≥ (0.5volT (S))1/(q−1)

(volT (T ))1/(q−1) = M .

Define γ2 to be the largest γ such that assumption 2 is satisfied at q = 2 and assume γ2 < 1. Then
[63] shows that γ2 = Θ(φ(T ) · Gap). Here Gap is defined as the ratio of internal connectivity and
external connectivity and often assumed to be Ω(1). Formally:

Definition 4. Given a target cluster T with vol(T ) ≤ 1
2 vol(V ), φ(T ) ≤ Ψ and minA⊂TφT (A) ≥ Φ,

the Gap is defined as:

Gap =
Φ2/log vol(T )

Ψ

We refer to [63] for a detailed explanation of this. In the case of q = 2, by using the infinity-norm
mixing time of a Markov chain, any γ ≤ O(φ(T ) ·Gap) satisfies this assumption as shown in lemma
3.2 of [63]. For 1 < q < 2, it will be more difficult to derive a closed form solution on how small γ
needs to be. However, in the supplement, we can show that this assumption still holds for subgraphs
with small diameters, i.e. O(log(|T |)) (This is reasonable because we expect good clusters and good
communities to have small diameters.). Combining these results gives us the following theorem.

Theorem 4.1. Assume the subgraph induced by target cluster T has diameter O(log(|T |)), when
we uniformly randomly sample points from T as seed sets, the expected largest distance of any
node in S̄ to S is O

(
log(|T |)
|S|

)
. Assume volT (S)

volT (T ) ≤ 2
(
( γ2

1+γ2
)/|T |

1
|S| log(1+l1/(q−1)))q−1

where l ≤
(1 + γ)max(d̃i), then we can set γ = γq−1

2 to satisfy assumption 2 for 1 < q < 2. Then a sweep cut
over x will find a cluster R where φ(R) = O

(
φ(T )

1
q /Gap

q−1
2
)
.

Our proof is largely a generalization of Lemma 4.1 in [63]. We will define a Lovasz-Simonovits
curve over dix

q−1
i , then we can show φ(R) = O

(
φ(T )√
γ

)
. Since we choose γ = (γ2)q−1 and

γ2 = Θ(φ(T ) · Gap), we have φ(R) = O
(φ(T )(3−q)/2

Gap(q−1)/2

)
≤ O

( φ(T )1/q

Gap(q−1)/2

)
.

5 Experiments

We perform three experiments that are designed to compare our method to others designed for similar
problems. We call ours SLQ (strongly local q-norm) for `(x) = (1/q)|x|q with parameters γ for
localization and κ for the sparsity. We call it SLQδ with the q-Huber loss. Full details are in the
supplemental material. Existing solvers are (i) ACL [5], that computes a personalized PageRank
vector approximately adapted with the same parameters [19]; (ii) CRD [57], which is hybrid of flow
and spectral ideas; (iii) FS is FlowSeed [55], a 1-norm based method; (iv) HK is the push-based
heat kernel [30]; (v) NLD is a recent nonlinear diffusion [25]; (vi) GCN is a graph convolutional
network [28]. Parameters are chosen based on defaults or with slight variations designed to enhance
the performance within a reasonable running time. All experiments in this section are performed
on a server with Intel Xeon Platinum 8168 CPU and 5.9T RAM. (Nothing remotely used the full
capacity of the system and these were run concurrently with other processes.) We provide a full
Julia implementation of SLQ in the supplement. We evaluate the routines in terms of their recovery
performance for planted sets and clusters. The bands reflect randomizing seeds choices in the target
cluster.

The first experiment uses the LFR benchmark [34]. We vary the mixing parameter µ (where larger µ
is more difficult) and provide 1% of a cluster as a seed, then we check how much of the cluster we
recover after a conductance-based sweep cut over the solutions from various methods. Here, we use
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Figure 3: The left figure shows the median running time for the methods as we scale the graph size
keeping the cluster sizes roughly the same. As we vary cluster mixing µ for a graph with 10, 000
nodes, the middle figure shows the median F1 score (higher is better) along with the 20-80% quantiles;
the right figure shows the conductance values (lower is better). These results show SLQ is better than
ACL and competitive with CRD while running much faster.

Table 1: Cluster recovery results from a set of 7 Facebook networks [53]. Students with a specific
graduation class year are used as target cluster. We use a random set of 1% of the nodes identified
with that class year as seeds. The class year 2009 is the set of incoming students, which form better
conductance groups because the students had not yet mixed with the other classes. Class year 2008 is
already mixed and so the methods do not do as well there. The values are median F1 and the violin
plots show the distribution over choices of the seeds.
Year Alg UCLA MIT Duke UPenn Yale Cornell Stanford

F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med.

2009 SLQ 0.9 0.9 1.0 1.0 1.0 0.9 0.9
SLQδ 0.9 0.8 1.0 0.9 0.9 0.9 0.9
CRD-3 0.3 0.7 0.7 0.6 0.7 0.5 0.5
CRD-5 0.9 0.9 1.0 1.0 1.0 0.9 0.9
ACL 0.9 0.8 0.9 0.9 0.9 0.9 0.9
FS 0.4 0.4 0.9 0.9 0.5 0.5 0.4
HK 0.9 0.5 0.9 0.9 0.9 0.9 0.9
NLD 0.2 0.2 0.3 0.3 0.3 0.3 0.3
GCN 0.3 0.2 0.3 0.3 0.2 0.3 0.2

2008 SLQ 0.7 0.5 0.8 0.8 0.8 0.8 0.8
SLQδ 0.6 0.5 0.7 0.7 0.7 0.7 0.7
CRD-3 0.6 0.5 0.7 0.7 0.7 0.6 0.6
CRD-5 0.5 0.5 0.5 0.5 0.7 0.6 0.5
ACL 0.5 0.5 0.7 0.7 0.7 0.7 0.7
FS 0.5 0.5 0.7 0.6 0.7 0.6 0.7
HK 0.5 0.5 0.0 0.5 0.5 0.5 0.5
NLD 0.3 0.3 0.3 0.3 0.3 0.3 0.2
GCN 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Table 2: Total running time of methods in this experiment.
Method SLQ SLQδ CRD-3 CRD-5 ACL FS HK NLD GCN

Time (seconds) 123 80 3049 9378 12 1593 106 10375 16534

the F1 score (harmonic mean of precision and recall) and conductance value (cut to volume ratio) of
the sets to evaluate the methods. The results are in Figure 3.

The second experiment uses the class-year metadata on Facebook [53], which is known to have good
conductance structure for at least class year 2009 [56] that should be identifiable with many methods.
Other class years are harder to detect with conductance. Here, we use F1 values alone. We use 1% of
the true set as seed. (For GCN, we also use the same number of negative nodes.) In the supplementary
material, we show what happens when varying the number of seeds. The results are in Table 1,2 and
show SLQ is as good, or better than, CRD and much faster.

The final experiment evaluates a finding from [31] on the recall of seed-based community detection
methods. For a group of communities with roughly the same size, we evaluate the recall of the
largest k entries in a diffusion vector. Minimizing conductance is not an objective in this experiment.
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They found PageRank (ACL) outperformed many different methods. Also, ACL – with the standard
degree normalization for conductance based sweepcuts performed worse than ACL without degree
normalization in this particular setting, which is different from what conductance theory suggests.
Here, with the flexibility of q, we see the same general result with respect to degree normalization and
found that SLQ with q > 2 gives the best performance even though the conductance theory suggests
1 < q < 2 for the best conductance bounds.

(a) DBLP (b) LiveJournal

0 100 200 300 400
0.0
0.1
0.2
0.3

SLQ (q=1.5)

SLQ-DN (q=1.5)

SLQ (q=4.0)

SLQ-DN (q=4.0)

SLQ (q=8.0)

SLQ-DN (q=8.0)
ACL

ACL-DN
HK-DNHK
CRD
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SLQ-DN (q=4.0)
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ACL-DNHK-DNHK

CRD

Figure 4: A replication of an experiment from [31] with SLQ on DBLP [6, 59] (with 1M edges) and
edges LiveJournal [44] (with 65M edges). The plot shows median recall over 600 groups of roughly
the same size as we look at the top k entries in the solution vector (x axis). The envelope represents 2
standard error. This shows SLQ with q > 2 gives better performance than ACL (PageRank), and all
improve on the degree-normalized (DN) versions used for conductance-minimizing sweep cuts.

6 Related work and discussion

The most strongly related work was posted to arXiv [17] contemporaneously as we were finalizing
our results. This research applies a p-norm function to the flow dual of the mincut problem with a
similar motivation. This bears a resemblance to our procedures, but does differ in that we include the
localizing set S in our nonlinear penalty. Also, our solver uses the cut values instead of the flow dual
on the edges and we include details that enable q-Huber and Berq functions for faster computation.
In the future, we plan to compare the approaches more concretely.

There also remain ample opportunities to further optimize our procedures. As we were developing
these ideas, we drew inspiration from algorithms for p-norm regression [1]. Also there are faster
converging (in theory) solvers using different optimization procedures [16] for 2-norm problems as
well as parallelization strategies [52].

Our work further contributes to the ongoing research into p-Laplacian research [3, 10, 2, 9, 38] by
giving a related problem that can be solved in a strongly local fashion. We note that our ideas can be
easily adapted to the growing space of hypergraph and higher-order graph analysis literature [7, 60, 38]
where the strategy is to derive a useful hypergraph from graph data to support deeper analysis.
We are also excited by the opportunities to combine with generalized Laplacian perspectives on
diffusions [18]. Moreover, our work contributes to the general idea of using simple nonlinearities
on existing successful methods. A recent report shows that a simple nonlinearity on a Laplacian
pseudoinverse is competitive with complex embedding procedures [11].

Finally, we note that there are more general constructions possible. For instance, differential penalties
for S and S̄ in the localized cut graph can be used for a variety of effects [46, 56]. For 1-norm
objectives, optimal parameters for γ and κ can also be chosen to model desierable clusters [56] –
similar ideas may be possible for these p-norm generalizations. We view the structured flexibility
of these ideas as a key advantage because ideas are easy to compose. This contributed to using
personalized PageRank to make graph convolution networks faster [29].

In conclusion, given the strong similarities to the popular ACL – and the improved performance in
practice – we are excited about the possibilities for localized p-norm-cuts in graph-based learning.

9



Broader Impact

Our research fits into a general theme of extracting latent or hidden information and finding groups in
data. This has a number of potential impacts – positive and negative – depending on how it is used.
We begin with the positive. First, we note that finding clusters in networks is critical to reducing
bias on measuring interventions with network effects [14]. Having more flexible and better ways
of doing this clustering will improve our ability to assess treatments on networks. Second, these
techniques enable powerful methods that allow us to understand scientific data in a variety of forms
including neuroscience [64], astronomy [36], and biology [40]. For instance, the latter reference
suggests putative therapeutics based on latent relationships between diseases and existing chemical
compounds. This has a number of wide ranging benefits. In terms of negative outcomes (note that
we intentionally omit references to ideas here due to the negative possibilities), these techniques
could be deployed to attempt to reveal intentionally hidden and sensitive attributes in social network
data. As a weak example, similar techniques are used to suggest new contacts on social networks and
recommendation systems – if these involve a sensitive cluster of individuals, this has the potential
to expose sensitive information. They can also be used to help de-anonymize network information
through network alignment techniques. These methods utilize a bias in the data in the form of network
edges sharing attributes.
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